宪法人工智能:来自人工智能反馈的无害性
5 分
关键词
摘要
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
AI理解论文
这篇文档介绍了一种名为Constitutional AI (CAI) 的方法,用于训练既有帮助性又无害的人工智能(AI)助手,而无需使用人类反馈标签来评估其无害性。该方法通过制定一系列简单的原则或指导方针,即宪法,来实现对AI行为的监督和指导。文档的结构清晰,主要内容包括以下几个方面:
-
动机:
- 文档首先介绍了开发该方法的动机,包括研究使用AI帮助人类更有效地监督AI的可能性,改进之前训练的无害AI助手,使AI能够解释其对有害请求的反对意见,提高AI行为原则的透明度,以及减少修改目标时收集新的人类反馈标签的迭代时间。
-
Constitutional AI 方法:
- 文档详细描述了Constitutional AI (CAI) 方法的实施步骤。该方法分为两个阶段:监督阶段和强化学习(RL)阶段。在监督阶段,通过对AI助手的初始响应进行批判和修订,使用一系列宪法原则来反复修订响应,并最终通过监督学习对最终修订的响应进行微调。在RL阶段,使用模型生成的标签对无害性进行评估,进一步改进无害性,并通过RL对监督学习模型进行微调。
-
贡献:
- 文档强调了该方法的贡献,包括通过简单的原则实现对AI行为的监督,训练既有帮助性又无害的AI助手,以及减少对人类反馈标签的依赖,从而更接近自我监督方法。
-
相关工作:
- 文档提到了与Constitutional AI 方法相关的其他工作,包括RLHF、LaMDA、InstructGPT等,以及对自我监督、链式思维推理和模型自我批判的讨论。
-
讨论:
- 最后,文档讨论了该方法的训练结果,强调了通过Constitutional AI 方法训练的AI助手在无害性方面的改进,并探讨了未来可能的研究方向和潜在的改进空间。
通过对文档的深入理解,可以清晰地了解Constitutional AI 方法的实施细节、动机和贡献,以及其在AI行为监督和指导方面的潜在影响。
Chat Paper
当前问答基于全文